Smoothing and Worst-Case Complexity for Direct-Search Methods in Nonsmooth Optimization
نویسندگان
چکیده
In the context of the derivative-free optimization of a smooth objective function, it has been shown that the worst case complexity of direct-search methods is of the same order as the one of steepest descent for derivative-based optimization, more precisely that the number of iterations needed to reduce the norm of the gradient of the objective function below a certain threshold is proportional to the inverse of the threshold squared. Motivated by the lack of such a result in the non-smooth case, we propose, analyze, and test a class of smoothing direct-search methods for the unconstrained optimization of nonsmooth functions. Given a parameterized family of smoothing functions for the non-smooth objective function dependent on a smoothing parameter, this class of methods consists of applying a direct-search algorithm for a fixed value of the smoothing parameter until the step size is relatively small, after which the smoothing parameter is reduced and the process is repeated. One can show that the worst case complexity (or cost) of this procedure is roughly one order of magnitude worse than the one for direct search or steepest descent on smooth functions. The class of smoothing direct-search methods is also showed to enjoy asymptotic global convergence properties. Some preliminary numerical experiments indicates that this approach leads to better values of the objective function, pushing in some cases the optimization further, apparently without an additional cost in the number of function evaluations.
منابع مشابه
Trust-Region Methods Without Using Derivatives: Worst Case Complexity and the NonSmooth Case
Trust-region methods are a broad class of methods for continuous optimization that found application in a variety of problems and contexts. In particular, they have been studied and applied for problems without using derivatives. The analysis of trust-region derivative-free methods has focused on global convergence, and they have been proved to generate a sequence of iterates converging to stat...
متن کاملWorst-Case Complexity of Smoothing Quadratic Regularization Methods for Non-Lipschitzian Optimization
Abstract. In this paper, we propose a smoothing quadratic regularization (SQR) algorithm for solving a class of nonsmooth nonconvex, perhaps even non-Lipschitzian minimization problems, which has wide applications in statistics and sparse reconstruction. The proposed SQR algorithm is a first order method. At each iteration, the SQR algorithm solves a strongly convex quadratic minimization probl...
متن کاملSmoothing Sqp Algorithm for Non-lipschitz Optimization with Complexity Analysis
Abstract. In this paper, we propose a smoothing sequential quadratic programming (SSQP) algorithm for solving a class of nonsmooth nonconvex, perhaps even non-Lipschitz minimization problems, which has wide applications in statistics and sparse reconstruction. At each step, the SSQP algorithm solves a strongly convex quadratic minimization problem with a diagonal Hessian matrix, which has a sim...
متن کاملA Quasi-Newton Approach to Nonsmooth Convex Optimization Problems in Machine Learning
We extend the well-known BFGS quasi-Newton method and its memory-limited variant LBFGS to the optimization of nonsmooth convex objectives. This is done in a rigorous fashion by generalizing three components of BFGS to subdifferentials: the local quadratic model, the identification of a descent direction, and the Wolfe line search conditions. We prove that under some technical conditions, the re...
متن کاملWorst case complexity of direct search
In this paper we prove that the broad class of direct-search methods of directional type based on imposing sufficient decrease to accept new iterates shares the worst case complexity bound of steepest descent for the unconstrained minimization of a smooth function, more precisely that the number of iterations needed to reduce the norm of the gradient of the objective function below a certain th...
متن کامل